LSTM Neural Networks for Language Modeling

نویسندگان

  • Martin Sundermeyer
  • Ralf Schlüter
  • Hermann Ney
چکیده

Neural networks have become increasingly popular for the task of language modeling. Whereas feed-forward networks only exploit a fixed context length to predict the next word of a sequence, conceptually, standard recurrent neural networks can take into account all of the predecessor words. On the other hand, it is well known that recurrent networks are difficult to train and therefore are unlikely to show the full potential of recurrent models. These problems are addressed by a the Long Short-Term Memory neural network architecture. In this work, we analyze this type of network on an English and a large French language modeling task. Experiments show improvements of about 8 % relative in perplexity over standard recurrent neural network LMs. In addition, we gain considerable improvements in WER on top of a state-of-the-art speech recognition system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Networks Compression for Language Modeling

In this paper, we consider several compression techniques for the language modeling problem based on recurrent neural networks (RNNs). It is known that conventional RNNs, e.g, LSTM-based networks in language modeling, are characterized with either high space complexity or substantial inference time. This problem is especially crucial for mobile applications, in which the constant interaction wi...

متن کامل

Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks

Long Short Term Memory (LSTM) Recurrent Neural Networks (RNNs) have recently outperformed other state-of-the-art approaches, such as i-vector and Deep Neural Networks (DNNs), in automatic Language Identification (LID), particularly when dealing with very short utterances (∼3s). In this contribution we present an open-source, end-to-end, LSTM RNN system running on limited computational resources...

متن کامل

LSTM Neural Reordering Feature for Statistical Machine Translation

Artificial neural networks are powerful models, which have been widely applied into many aspects of machine translation, such as language modeling and translation modeling. Though notable improvements have been made in these areas, the reordering problem still remains a challenge in statistical machine translations. In this paper, we present a novel neural reordering model that directly models ...

متن کامل

Acoustic Modeling in Statistical Parametric Speech Synthesis – from Hmm to Lstm-rnn

Statistical parametric speech synthesis (SPSS) combines an acoustic model and a vocoder to render speech given a text. Typically decision tree-clustered context-dependent hidden Markov models (HMMs) are employed as the acoustic model, which represent a relationship between linguistic and acoustic features. Recently, artificial neural network-based acoustic models, such as deep neural networks, ...

متن کامل

Language Identification Based on Generative Modeling of Posteriorgram Sequences Extracted from Frame-by-Frame DNNs and LSTM-RNNs

This paper aims to enhance spoken language identification methods based on direct discriminative modeling of language labels using deep neural networks (DNNs) and long shortterm memory recurrent neural networks (LSTM-RNNs). In conventional methods, frame-by-frame DNNs or LSTM-RNNs are used for utterance-level classification. Although they have strong frame-level classification performance and r...

متن کامل

LSTM, GRU, Highway and a Bit of Attention: An Empirical Overview for Language Modeling in Speech Recognition

Popularized by the long short-term memory (LSTM), multiplicative gates have become a standard means to design artificial neural networks with intentionally organized information flow. Notable examples of such architectures include gated recurrent units (GRU) and highway networks. In this work, we first focus on the evaluation of each of the classical gated architectures for language modeling fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012